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Abstract
We consider a class of multidimensional maps which naturally generalize the
QRT map of the plane. Our 2n-dimensional maps are volume preserving and
have n rational invariants, but we do not generally have a symplectic form.
However, many specializations and reductions are integrable, some of which
we present. Included in these are some new four-dimensional generalizations
of the McMillan map.

PACS numbers: 02.30.Ik, 45.05.+x

1. Introduction

The largest family of integrable mappings in the plane, known to date, was constructed by
Quispel, Roberts and Thompson [9]. These mappings are rational and depend upon 18
parameters, possess an invariant which is fractionally bi-quadratic and are measure preserving
(and therefore symplectic). The QRT family can be ‘integrated’ in terms of elliptic functions.

There are algebro-geometric arguments [12] which suggest that the QRT map is the most
general bi-rational map of the plane which can be parameterized in terms of elliptic functions,
but there are still attempts to find integrable mappings of the plane which do not fall into the
QRT class [13].

On the other hand, there is no classification of higher dimensional, integrable mappings,
but a number of interesting examples have been published in recent years. In [3], Capel
and Sahadevan constructed a four-dimensional symplectic map with a rational four-quadratic
integral. The symplectic form is non-constant and in general their map has only one integral.
However, by further reduction, they were able to relate their maps to lattice versions of the
MKdV and sine-Gordon equations, with a Lax representation, and thus find a second integral,
which was in involution with the first. The same approach was later used by Iatrou [5], who
obtained a different four-dimensional map, with a constant symplectic form, together with
various higher dimensional ones, also with Lax representations.
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In this paper, we present some different higher dimensional generalizations of the QRT
maps. Our starting point is a number of vector equations analogous to those introduced by QRT
(see (2)). These give rise to pairs of non-commuting involutions, which may be composed
to form 2n-dimensional, multi-parameter maps with n or more invariants (first integrals)
and, furthermore, are measure preserving. Without further structure it is not possible to say
anything about the integrability of our maps. On the intersection of level surfaces of the n first
integrals, each map reduces to an n-dimensional, reduced map, but generically has no further
structure. It should be pointed out that it may not be possible to write the n-dimensional maps
explicitly (since this involves solving a collection of polynomial equations in several variables)
and that, even when this can be done, the resulting map would not generally be rational, but
algebraic.

By imposing some symmetry constraints on our choice of vectors (generalizing X and Y
of the QRT construction) and on the choice of parameter matrices (generalizing A0 and A1 of
the QRT construction), we derive integrable subclasses of our general maps. In particular, we
derive some new 4D generalizations of the McMillan map (see section 3.1). In other cases
(see section 3.2) an additional first integral leads to a degenerate Poisson bracket, which can
then be reduced to lower dimensions and hence to integrability.

Before introducing our maps, we first discuss some of the additional algebraic properties
which can be used to deduce integrability.

The Liouville theorem. Veselov [12] extended the usual Liouville theorem to the context of
maps. A 2n-dimensional symplectic map with n (functionally independent) involutive first
integrals is integrable, reducing to a simple shift on the torus (intersection of level surfaces of
first integrals) when written in action-angle variables. The n commuting continuous flows on
the torus are continuous symmetries of the map.

Commuting maps. Veselov also discusses another definition of integrability in [12]. In
analogy to the ‘symmetry approach’ in the theory of integrable nonlinear evolution equations
(see [7] and references therein), Veselov defines a map to be integrable if it commutes (under
the operation of function composition) with another, requiring that their orbits are disjoint
(discounting, for example, the commutativity of a map and its double iteration). This was
inspired by the work of Ritt [10].

Additional first integrals. With additional integrals, the phase space reduces to less than n
dimensions. In the case of measure preserving maps with 2(n − 1) integrals, we can build a
degenerate Poisson bracket with 2(n − 1) Casimir functions, reducing the map to being two
dimensional and symplectic. With 2n − 1 integrals, this two-dimensional symplectic map is
integrable.

Decoupled or triangular systems. A map may decouple into integrable sub-maps in a variety
of ways. A direct sum of integrable maps (acting on the Cartesian product of phase spaces) is
trivially integrable. Some of our examples are triangular, meaning that 2k variables satisfy a
self-contained integrable map with these 2k variables acting as parameters in the map satisfied
by the remaining 2(n − k) variables (see example 3.2 and equation (24)). The integrability of
the whole map rests upon the integrability of the second part. In our examples this integrability
holds.

Integrability up to quadrature? It should be noted that none of these definitions of integrability
entail such notions as ‘integrability up to quadrature’ that we have for ordinary differential
equations.
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2. The general construction

In this paper we present some generalizations of the QRT map, giving a construction of a family
of 2n-dimensional maps, possessing n independent first integrals. Integrable subfamilies are
presented in later sections. The general construction directly mirrors that of QRT in two
dimensions, so we first describe this case.

2.1. The QRT map of the plane

Consider the vectors

X =

x2

x

1


 , Y =


y2

y

1


 , f =


f1(y)

f2(y)

f3(y)


 , g =


g1(x̃)

g2(x̃)

g3(x̃)


 , (1)

together with the equations

X · (f × X̃) = 0, Y · (g × Ỹ) = 0, (2)

where the ‘tilde’ refers to vectors of the same form, but written in terms of the variables x̃

and ỹ. These equations are quadratic in x, x̃ (respectively y, ỹ), but possess factors (x̃ − x)

(respectively (ỹ − y)), so can be solved for x̃, ỹ in rational form:

x̃ = f1(y) − xf2(y)

f2(y) − xf3(y)
, ỹ = g1(x̃) − yg2(x̃)

g2(x̃) − yg3(x̃)
. (3)

The vectors f and g have special form

f = (A0Y) × (A1Y), g = (
AT

0 X̃
) × (

AT
1 X̃

)
,

which, when inserted into (2), along with the use of a standard vector identity, leads to

XT A0Y
XT A1Y

= X̃T A0Y

X̃T A1Y
and

X̃T A0Y

X̃T A1Y
= X̃T A0Ỹ

X̃T A1Ỹ
,

from which the following integral is deduced:

I (x, y) = XT A0Y
XT A1Y

, with I (x̃, ỹ) = I (x, y). (4)

The 18 parameters of the map and the integral are just the matrix coefficients of A0 and A1.
An important property of the QRT map is that it is reversible, meaning that it can be written
as the composition i2 ◦ i1 of two involutions:

ι1 :


x̃ = f1(y) − xf2(y)

f2(y) − xf3(y)
,

ỹ = y,

ι2 :




x̃ = x,

ỹ = g1(x̃) − yg2(x̃)

g2(x̃) − yg3(x̃)
,

with ι21 = ι22 = id.

2.2. A degenerate case

When the parameter matrices Ai take the special form

Ai =

0 0 0

0 εi ξi

0 λi µi


 ,
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we have f2 = f3 = g2 = g3 = 0, so the QRT map (3) is ill defined. However, the integral (4)
is still defined and takes the form

I (x, y) = ε0xy + λ0y + ξ0x + µ0

ε1xy + λ1y + ξ1x + µ1
. (5)

By considering the two equations I (x̃, y) = −I (x, y) and I (x, ỹ) = −I (x, y), we obtain the
two involutions:

ι1 :


x̃ = − c1(b0x + c0) + c0(b1x + c1)

b1(b0x + c0) + b0(b1x + c1)
,

ỹ = y,

ι2 :




x̃ = x,

ỹ = −f1(e0y + f0) + f0(e1y + f1)

e1(e0y + f0) + e0(e1y + f1)
,

where(
bi

ci

)
=

(
εi ξi

λi µi

) (
y

1

)
= AiY,

(
ei

fi

)
=

(
εi λi

ξi µi

) (
x̃

1

)
= AT

i X̃.

With these definitions, I (x, y) can be written as

I = b0x + c0

b1x + c1
or I = e0y + f0

e1y + f1
,

depending upon which involution we are dealing with. The involutions can then be written as

ι1 :


x̃ = − c1K + c0

b1K + b0
= α1y + β1

γ1y + δ1
,

ỹ = y,

ι2 :




x̃ = x,

ỹ = −f1K + f0

e1K + e0
= α2x + β2

γ2x + δ2
,

where K is the numerical value of the integral I (x, y) for a given orbit and αi , etc, are just
combinations of ci , etc, and K. By solving I (x, y) = K for y (in the case of ι1) or for x (in the
case of ι2), each of these involutions reduces to a fractionally linear map of one variable and
is thus exactly solvable.

2.3. The 2n-dimensional generalization

We build mappings of a 2n-dimensional space, with coordinates xi, yi, i = 1, . . . , n. Consider
the set of 2N vectors, with N = 1

2n2(n + 1),

Xij

k =

xixj

xk

1


 , Yij

k =

yiyj

yk

1


 , i, j, k = 1, . . . , n. (6)

From these we choose 2n vectors Xi , Yi , i = 1, . . . , n, with which we form the equations

Xi · (fi × X̃i ) = 0, Yi · (gi × Ỹi ) = 0, (7)

where the vectors fi , gi are defined by

fi =

f3i−2

f3i−1

f3i


 = (Ai0Yi ) × (Ai1Yi ), gi =


g3i−2

g3i−1

g3i


 = (

AT
i0X̃i

) × (
AT

i1X̃i

)
. (8)

As in the case of the QRT map, the matrices Ai0, Ai1 are the source of the 18n parameters in
the map. The maps obtained in this way have n integrals, given by

Ik(x, y) = XT
k Ak0Yk

XT
k Ak1Yk

, with Ik(x̃, ỹ) = Ik(x, y), k = 1, . . . , n. (9)

There are NCn choices of the vectors Xij

k (and a symmetric choice of Yij

k ), each giving either
a map or a 2–1 correspondence, but they fall into equivalence classes under the action of the
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permutation group Sn of n symbols. Generally, we discard the correspondences, concentrating
on the maps, which are bi-rational. Furthermore, for each n, only some of these maps are
genuinely new, since many of them decouple into lower dimensional maps or into triangular
form. Nevertheless, this construction gives rise to an interesting array of new maps of
2n-dimensional space with n or more integrals. Many subcases are integrable and we have
not yet detected any non-integrability.

As with the QRT construction, we generally construct pairs of non-commuting involutions,
which are composed to form nontrivial infinite order maps, which are therefore reversible.
For special choices of parameters, the maps can be of finite order, in parallel with the usual
QRT map (see [11]).

3. Four-dimensional maps

Here, with n = 2, we have N = 6, giving us 15 possibilities, which fall into nine equivalence
classes under the permutation group S2. The choices

{
X11

1 , X22
2

}
,
{
X11

2 , X22
1

}
,
{
X12

1 , X12
2

}
are

symmetric under S2. The first is just a pair of uncoupled QRT maps and the second a 2–1
correspondence. The third case is our example 3.1. Of the remaining 12 choices, 6 are 2–1
correspondences and 6 bi-rational, one of which is given in example 3.2.

Example 3.1 (with vectors X12
1 and X12

2 ). With this choice, the 36-parameter family of maps
takes the form

x̃1 = (f1 − x2f2)(f4 − x1x2f6)

(f5 − x2f6)(f1 − x1x2f3)
, x̃2 = (f4 − x1f5)(f1 − x1x2f3)

(f2 − x1f3)(f4 − x1x2f6)
,

ỹ1 = (g1 − y2g2)(g4 − y1y2g6)

(g5 − y2g6)(g1 − y1y2g3)
, ỹ2 = (g4 − y1g5)(g1 − y1y2g3)

(g2 − y1g3)(g4 − y1y2g6)
,

(10)

where fi(y) and gi(x̃) are given by (8). This map has the two integrals I1, I2, given by (9), is
measure preserving with the density

m(x1, x2, y1, y2) = 1(
XT

1 A10Y1
)(

XT
2 A21Y2

) , (11)

and is reversible, since it can be written in the form ι2 ◦ ι1, where the involutions ιk are given
by

ι1 :


x̃1 = (f1 − x2f2)(f4 − x1x2f6)

(f5 − x2f6)(f1 − x1x2f3)
, x̃2 = (f4 − x1f5)(f1 − x1x2f3)

(f2 − x1f3)(f4 − x1x2f6)
,

ỹ1 = y1, ỹ2 = y2,

(12)

ι2 :




x̃1 = x1, x̃2 = x2,

ỹ1 = (g1 − y2g2)(g4 − y1y2g6)

(g5 − y2g6)(g1 − y1y2g3)
, ỹ2 = (g4 − y1g5)(g1 − y1y2g3)

(g2 − y1g3)(g4 − y1y2g6)
.

(13)

Each of these involutions anti-preserves the above measure.
The vectors Xi , Yi of this example are symmetric under the permutation 1 ↔ 2. For the

map (10) to have this symmetry, we must restrict the vectors fi so that f1 = f2, which means
that the matrices Aki must satisfy A10 = A20 and A11 = A21. Under these restrictions, the map
is invariant and the integrals interchange under the above permutation, which corresponds to
a simple evolution of phase space, given by

x̂1 = x2, x̂2 = x1, ŷ1 = y2, ŷ2 = y1. (14)

The maps (10) and (14) commute and I1 ↔ I2 under the latter.
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This symmetrically coupled map reduces to the QRT when (x2, y2) → (x1, y1).

Example 3.2 (with vectors X11
1 and X12

2 ). With this choice, the 36-parameter family of maps
takes the form

x̃1 = (f1 − x1f2)

(f2 − x1f3)
, x̃2 = (f4 − x1f5)x2

f4 − x̃1f5 + (x̃1 − x1)x2f6
,

ỹ1 = (g1 − y1g2)

(g2 − y1g3)
, ỹ2 = (g4 − y1g5)y2

g4 − ỹ1g5 + (ỹ1 − y1)y2g6
,

where fi(y) and gi(x̃) are given by (8). Once again, this map is measure preserving and
reversible. This consists of a self-contained QRT map of the (x1, y1) plane, weakly coupled
to a rational map of the (x2, y2) variables, with coefficients which depend upon (x1, y1). The
two integrals split in a similar way. The first integral I1 is just the original QRT integral, as
follows from the choice of X1, Y1. On the other hand, the second integral takes the form

I2 = c1x2y2 + c2x2 + c3y2 + c4

d1x2y2 + d2x2 + d3y2 + d4
,

where ci, di the are polynomial functions of the variables x1, y1. Using the argument following
the integral (5) of the degenerate case of the QRT map, we solve I2 = K for y2 to give the latter
as a fractionally linear expression in x2, with coefficients depending upon x1, y1. Substituting
this into the expression for x̃2 gives a simple fractionally linear formula:

x̃2 = Ax2 + B

Cx2 + D
,

where, once again, A, . . . , D are the polynomial expressions in x1, y1. In summary, we have
that x2, y2 evolve by a pair of fractionally linear maps, whose coefficients depend upon the
solution of the QRT map, which is itself integrable, so our triangular map is integrable.

3.1. Four-dimensional analogues of the two-dimensional McMillan map

It is also possible to create four-dimensional generalizations of any of the standard reductions
of the QRT map. These are produced by special choices of the parameters in the matrices
(Ai0, Ai1). By choosing the matrices as

A10 = A20 =

 1 0 −b

0 −2α 0
−b 0 b2


 , A11 = A21 =


0 0 0

0 0 0
0 0 1


 ,

we obtain coupled McMillan type maps, the specific form depending upon the choice of
vectors Xi , Yi .

We would normally have b = 1, but in the next example we also wish to consider the
reduction with b = 0.

Example 3.3 (The symmetrically coupled map). Symmetrically coupled map of example 3.1
reduces to

x̃1 = y1, x̃2 = y2,

ỹ1 = −x2y2

y1
− 2αy2

b − y1y2
, ỹ2 = −x1y1

y2
− 2αy1

b − y1y2
,

(15)

with integrals

I1 = (b − x1x2)(b − y1y2) − 2αx1y1, I2 = (b − x1x2)(b − y1y2) − 2αx2y2. (16)
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This map is volume preserving. This is different from the four-dimensional generalization
which arises through periodic reductions of the lattice KdV equation (see [4]) and is a particular
case of the map (10), subject to the restrictions that it commutes with the involution (14).

Defining the first integral K = 1
2α

(I2 − I1) = x1y1 − x2y2, we consider the reduction
of the map to the three-dimensional manifold defined by the level surface K = k. First, we
rewrite the four-dimensional map as

x̃1 = y1, x̃2 = y2,

ỹ1 = −x1 +
k

y1
− 2αy2

b − y1y2
, ỹ2 = −x2 − k

y2
− 2αy1

b − y1y2
.

(17)

Using the first two of these to replace yi , this map is canonical, with generating function

S = x1x̃1 + x2x̃2 + k log

(
x̃2

x̃1

)
− 2α log(b − x̃1x̃2).

Remark 3.1. The map (17), with α = 1, k = 0, occurs in [1] (equation (3.38)) in the context
of a stationary, discrete NLS equation, possessing a Lax pair.

Now use y2 = x1y1−k

x2
to reduce the map to three dimensions

x̃1 = y1, x̃2 = x1y1 − k

x2
, ỹ1 = −x1 +

k

y1
− 2α(x1y1 − k)

bx2 + ky1 − x1y
2
1

, (18)

with degenerate symplectic form

ω =




0 − y1

x2
1

y1

x2
0 x1

x2

−1 − x1
x2

0


 .

In these coordinates

I1 = (b − x1x2)
(
bx2 + ky1 − x1y

2
1

)
x2

− 2αx1y1

and I2 = I1 + 2αk is redundant. The null vector of ω is n = (−x1, x2, y1), which satisfies
n · ∇I1 = 0 and is transformed to −n under the map (18). This means that the integral curves
(as unparameterized geometric curves) are invariant under the map, so the three-dimensional
space separates. We may adapt coordinates to the vector field (using the invariants of n as
two of them) to obtain

u = x1x2, v = x1y1, w = y1, so n = (0, 0, w),

and the map becomes

ũ = v(v − k)

u
, ṽ = (k − v)(bu + (2α + k − v)v)

bu + (k − v)v
, w̃ = ṽ

w
.

We see that the u–v plane is invariant and also that

I1 = (b − u)(bu + (k − v)v)

u
− 2αv and ω =


 0 1

u
0

− 1
u

0 0
0 0 0


 .

This means that the three-dimensional map is triangular, with the two-dimensional map of
the u–v plane having a first integral and being measure preserving, rendering it completely
integrable.



10780 A P Fordy and P G Kassotakis

Canonical coordinates are x = u, y = v
u

, in terms of which the two-dimensional map is

x̃ = y(xy − k), ỹ = −b + (2α + k)y − xy2

y(b + ky − xy2)
(19)

and

I1 = (b − x)(b + y(k − xy)) − 2αxy, ω =
(

0 1
−1 0

)
.

We may construct the particular matrices A0 and A1, such that the corresponding QRT map
has the integral I1. We have

A0 =

 1 0 0

−b −2α − k −b

0 bk b2


 , A1 =


0 0 0

0 0 0
0 0 1


 ,

and

x̄ = b(1 + y2) + (2α + k)y − xy2

y2
,

ȳ = −xy4(xy − 2α − k) + by2(2α + k − y(2x − ky + xy2)) + b2y(y2 + 1)

(b + (2α + k)y − xy2)(b(1 + y2) + (2α + k)y − xy2)
.

(20)

The maps (19) and (20) commute.
All of our coordinate changes are bi-rational, so from the solution of the map (19) we can

reverse our steps to obtain the solution of the original four-dimensional McMillan map (15).

The case b = 0. We now consider the case of (15) with the condition that b = 0:

ϕ : x̃1 = y1, x̃2 = y2, ỹ1 = 2α − x2y2

y1
, ỹ2 = 2α − x1y1

y2
, (21)

with integrals

I1 = x1y1(x2y2 − 2α), I2 = x2y2(x1y1 − 2α). (22)

Whilst all of our previous formulae hold in this case, we now find that ϕ preserves the
four-dimensional Poisson matrix

P =
(

0 X
−XT 0

)
, where X =

(
2α−x1y1

2α−x2y2

y2

y1
x2
x1

1

)
. (23)

We have

ϕ∗P = P, Ik ◦ ϕ = Ik, {I1, I2} = (∇I1)
T P∇I2 = 0,

so the map ϕ is Liouville integrable in the four-dimensional space.
However, it is also possible to reduce this Poisson bracket to three and then to two

dimensions. We again define K = x1y1 − x2y2 and write the Poisson matrix PK of the
coordinates (x1, y1,K, x2):

PK =




0 2α−x1y1

2α+K−x1y1

K(2α+K−2x1y1)

y1(2α+K−x1y1)
0

− 2α−x1y1

2α+K−x1y1
0 −K(2α+K−2x1y1)

x1(2α+K−x1y1)
− x2

x1

−K(2α+K−2x1y1)

y1(2α+K−x1y1)

K(2α+K−2x1y1)

x1(2α+K−x1y1)
0 0

0 x2
x1

0 0


 .

This Poisson matrix is invariant under the mapping (when written in these coordinates)

ϕk4(x1, y1,K, x2) =
(

y1,
2α + K − x1y1

y1
,K,

x1y1 − K

x2

)
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and the 3×3 block, P3 is invariant under the three-dimensional reduction ϕk3(x1, y1,K). This
map has integrals I1 = x1y1(x1y1 − K − 2α) and K (with I2 = I1 + 2αK), and the Poisson
matrix P3 has Casimir function C = I1

K
. On the symplectic leaves C = s, the map and Poisson

matrix reduce to

ϕ2(x1, y1) =
(

y1,
s(2α − x1y1)

y1(s + x1y1)

)
, P2 =

(
0 1 + x1y1

s

−1 − x1y1

s
0

)
.

On this manifold, the integral takes the form

I1 = sx1y1(x1y1 − 2α)

x1y1 + s
.

Whilst it is possible to explicitly construct canonical coordinates, we have not managed to
find ones for which the map and integral take rational form.

Example 3.4 (The weakly coupled map). The weakly coupled map (3.2) reduces to

x̃1 = y1, x̃2 = y2,

ỹ1 = −x1 − 2αy1

1 − y2
1

, ỹ2 = − x2
(
1 − y2

1

)
(2αy2 + x1(1 − y1y2))

2α(y1 − y2) + x1(1 − y2
1)(1 − y1y2)

,
(24)

with integrals

I1 = (
1 − x2

1

)(
1 − y2

1

) − 2αx1y1, I2 = (1 − x1x2)(1 − y1y2) − 2αx2y2, (25)

where we have put b = 1 in the matrices Ai0. This map preserves the measure with density
m = 1

x1x2
. This map is integrable in the same way as example (3.2) and is a much simpler

calculation, since the formula x̃2 = y2 immediately becomes fractionally linear in x2 upon
solving I2 = K for y2. This time x1, y1 are solutions of the usual McMillan map.

3.2. Four-dimensional maps with three first integrals

Consider again the symmetrically coupled map of example 3.1. We now restrict to the
24-parameter subfamily defined by the matrices

A1i =

α1i β1i 0

δ1i ε1i ζ1i

0 ζ1i µ1i


 , A2i =


α2i β2i 0

β2i ε2i ζ2i

0 λ2i µ2i


 , i = 0, 1.

This choice leads to a symmetry of the integrals I1, I2 under the exchange x1 ↔ y1:
Ik(x1, x2, y1, y2) = Ik(y1, x2, x1, y2), which are therefore invariant under the involution

ι11 : x̂1 = y1, x̂2 = x2, ŷ1 = x1, ŷ2 = y2. (26)

Composing the involution ι1 of (12) and ι11, we obtain the four-dimensional map ϕ = ι11 ◦ ι1
which possesses three integrals (the third being y2). In this way the map reduces to three
dimensions, possessing two integrals, I1 and I2, with y2 acting as a parameter.

Since the map is measure preserving, we may use one of these integrals to construct a
degenerate Poisson bracket (see [2]), which thus reduces to the level surfaces of its Casimir
function, which are symplectic leaves. In this way the mapping is two-dimensional, symplectic
and possesses one first integral (the other having been the Casimir function), so is integrable.
In fact, we may use either of the two integrals (or even any function of them) to carry out this
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construction. Starting with any first integral I and the volume element (with density (11)), we
make the following contraction:


I =
(

m
∂

∂x1
∧ ∂

∂x2
∧ ∂

∂y1

)
� dI

= m

(
∂I

∂y1

∂

∂x1
∧ ∂

∂x2
− ∂I

∂x2

∂

∂x1
∧ ∂

∂y1
+

∂I

∂x1

∂

∂x2
∧ ∂

∂y1

)
.

This is degenerate, with I as its Casimir function. Since both the volume element and the
function I are invariant under the action of the map, so is 
. A second invariant function
then generates a continuous symmetry of the map. In particular, we write 
j to represent the
Poisson bi-vector (also the corresponding matrix) with Casimir Ij and write the continuous
symmetry in bi-Hamiltonian form:

0 = 
1∇I1, 
1∇I2 = −
2∇I1, 
2∇I2 = 0. (27)

When reduced to the two-dimensional symplectic leaves, the map reduces to the standard QRT
map of the plane.

The explicit form of these calculations is complicated for the general set of parameters,
so we consider a simple example with polynomial first integrals by choosing

Ai1 =

0 0 0

0 0 0
0 0 1


 .

With the given form of the matrices Ai0, the integrals are

I1 = µ10 + ζ10(x1 + y1) + x1y1(α10x2y2 + β10x2 + δ10y2 + ε10),

I2 = µ20 + ζ20x2 + λ20y2 + x2y2(α20x1y1 + β20(x1 + y1) + ε10).

The three-dimensional Poisson matrix 
1, written in terms of the coordinates x1, y1, I1, is


1 = m


 0 −x1y1(β10 + α10y2) 0

x1y1(β10 + α10y2) 0 0
0 0 0


 .

With formula (11), we see that in this case m = I1, so we may omit it.

Elimination of x2. On the level surface I1 = s we can eliminate x2 to obtain a rational map
in x1, y1, with parameters y2, s, as well as those of the matrices Ai0, and the integral I2 takes
rational form. We may build the QRT map of the x1–y1 plane with this integral and this turns
out to be the double iteration of our map. This is best illustrated by choosing very specific
examples of the matrices Ai0, such as

A10 =

 0 1 0

−1 0 1
0 1 0


 , A20 =


0 1 0

1 0 1
0 −1 0


 .

The map is then

ϕ(x1, y1) =
(

y1,
(s − y1)(y1y2 + 1)

x1y2(y1y2 − 1)

)
,

and the first integral

I2 = (s − x1 − y1)(1 + (x1 + y1)y2)

x1y1
+ (x1 + y1)y

2
2 .
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This first integral corresponds to a QRT map of the plane with matrices

A0 =

 0 y2

2 −y2

y2
2 −2y2 sy2 − 1

−y2 sy2 − 1 s


 , A1 =


0 0 0

0 1 0
0 0 0


 .

The corresponding QRT map is the composition j2 ◦ j1 of the two involutions:

j1(x1, y1) =
(

(s − y1)(y1y2 + 1)

x1y2(y1y2 − 1)
, y1

)
, j2(x1, y1) =

(
x1,

(s − x1)(x1y2 + 1)

y1y2(x1y2 − 1)

)
.

It can be checked directly that j2 ◦ j1 = ϕ ◦ ϕ, but that ϕ does not commute with either of
these involutions.

Elimination of y1. On the level surface I1 = s we may, as an alternative, eliminate y1 to obtain
a rational map in x1, x2, with parameters y2, s, as well as those of the matrices Ai0, and the
integral I2 again takes rational form. With the same choice of A10, A20 as above, we obtain

ϕ(x1, x2) =
(

s − x1

1 + x1(x2 − y2)
,
(sy2 − 1 − x1x2)(1 + sy2 + x1(1 + x1y2)(x2 − y2))

(s − x1)(1 + sy2 + x1(x2 − 2y2))

)
,

I2 = x2(1 + x1x2) +
(
x2

1x
2
2 − 2x1x2 + sx2 − 1

)
y2 + x1(1 − x1x2)y

2
2

1 + x1(x2 − y2)
.

We may calculate the matrices A0 and A1 for which this I2 is a QRT integral in the x1–x2

plane. It turns out that the QRT map is exactly our map ϕ(x1, x2).

4. Higher dimensional maps

Whilst the general construction of section 2 can be carried out in any dimension, the explicit
formulae become complicated for general parameters, so it is more profitable to choose
interesting reductions, such as the coupled McMillan maps of section 3.1 or that of section 3.2.
An additional problem is that of finding an appropriate symplectic form, since we have no
general construction for this.

To illustrate this without filling the paper with too many unwieldy formulae we just present
one simple example, and even here specify simple numerical values for all the (in this case)
63 parameters.

Example 4.1 (six-dimensional maps with five integrals). Consider the choice of vectors
X12

1 , X23
2 and X31

3 , giving rise to the map

ι1 =




x̃1 = (f1 − x2f2)
(
x1x2x

2
3f6f9 − x1x2x3f6f8 − x1x3(f4f9 − f5f8) − x3f5f7 + f4f7

)
(f8 − x3f9)

(
x1x

2
2x3f3f6 − x1x2x3f3f5 − x2x3(f1f6 − f2f5) − x2f2f4 + f1f4

) ,

x̃2 = (f4 − x3f5)
(
x2

1x2x3f3f9 − x1x2x3f2f9 − x1x2(f2f8 − f3f7) − x1f1f8 + f1f7
)

(f2 − x1f3)
(
x1x2x

2
3f9f6 − x1x2x3f6f8 − x1x3(f4f9 − f5f8) − x3f5f7 + f4f7

) ,

x̃3 = (f7 − x1f8)
(
x1x

2
2x3f3f6 − x1x2x3f3f5 − x2x3(f1f6 − f2f5) − x2f2f4 + f1f4

)
(f5 − x2f6)

(
x2

1x2x3f3f9 − x1x2x3f2f9 − x1x2(f3f7 − f2f8) − x1f1f8 + f1f7
) ,

ỹ1 = y1,

ỹ2 = y2,

ỹ3 = y3.
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The 63-parameter involution corresponding to the choice of matrices

A1i =

α1i β1i 0

δ1i ε1i ζ1i

0 ζ1i µ1i


 , A2i =


α2i β2i γ2i

δ2i ε2i ζ2i

κ2i λ2i µ2i


 ,

A3i =

α3i β3i 0

β3i ε3i ζ3i

0 λ3i µ3i


 , i = 0, 1

has integrals I1, I2 and I3 of the form (9), which possess the discrete symmetry 1 ↔ 2, making
them invariant under the second involution

ι11 : x̃1 = y1 x̃2 = x2 x̃3 = x3 ỹ1 = x1 ỹ2 = y2 ỹ3 = y3.

Composing ι1 and ι11 we obtain a six-dimensional mapping φ = ι11 ◦ ι1 with five integrals
(the fourth and fifth being y2 and y3). By considering y2, y3 as parameters, we have a four-
dimensional measure preserving mapping with three integrals. The formula for the measure
is

m(x1, x2, x3, y1) = 1(
XT

1 A10Y1
)(

XT
2 A21Y2

)(
XT

3 A30Y3
) . (28)

Following the approach of section 3.2, we build three degenerate Poisson tensors.
Choosing any two first integrals I, J , we have


(I, J ) =
(

m
∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3
∧ ∂

∂y1

)
�dI�dJ,

giving
1

m

(I, J ) =

(
∂I

∂y1

∂J

∂x3
− ∂I

∂x3

∂J

∂y1

)
∂

∂x1
∧ ∂

∂x2
+

(
∂I

∂x2

∂J

∂y1
− ∂I

∂y1

∂J

∂x2

)
∂

∂x1
∧ ∂

∂x3

+

(
∂I

∂x3

∂J

∂x2
− ∂I

∂x2

∂J

∂x3

)
∂

∂x1
∧ ∂

∂y1
+

(
∂I

∂y1

∂J

∂x1
− ∂I

∂x1

∂J

∂y1

)
∂

∂x2
∧ ∂

∂x3

+

(
∂I

∂x1

∂J

∂x3
− ∂I

∂x3

∂J

∂x1

)
∂

∂x2
∧ ∂

∂y1
+

(
∂I

∂x2

∂J

∂x1
− ∂I

∂x1

∂J

∂x2

)
∂

∂x3
∧ ∂

∂y1
.

This has rank 2, with two Casimir functions, I and J . With (i, j, k) being a cyclic permutation
of (1, 2, 3), we define the three degenerate Poisson tensors


i = 
(Ij , Ik).

Using the same symbol to denote the Poisson matrix, we have the following relations:


i∇Ij = 0, i �= j and 
1∇I1 = 
2∇I2 = 
3∇I3. (29)

Since the integrals and the volume element are invariant under the action of the mapping, so
are the three Poisson matrices. The tri-Hamiltonian flow of (29) is a continuous symmetry
of the map and the trajectory is just the intersection of the five integrals in the original six-
dimensional space. Since each Poisson matrix has rank 2, the four-dimensional manifold
defined by (x1, x2, x3, y1) can be foliated by the two-dimensional symplectic leaves of the
Poisson matrix, these being the level sets of the pair of Casimir functions.

To illustrate this construction, we consider a special case of the parameter matrices:

A10 =

 0 1 0

−1 0 1
0 1 0


 , A20 =


1 0 0

0 1 0
0 0 1


 ,

A30 =

0 1 0

1 0 1
0 −1 0


 , Ai1 =


0 0 0

0 0 0
0 0 1


 ,
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for i = 1, 2, 3, leading to the integrals

I1 = x1 + y1 + x1y1(x2 − y2), I2 = 1 + x2y2(1 + x3y3),

I3 = x3 − y3 + x3y3(x1 + y1).

We only give the explicit expression for one of the Poisson tensors:


2 = (1 + x1x2 − x1y2)(1 + x1y3 + y1y3)∂x1 ∧ ∂x2 + x1x3y1y3∂x1 ∧ ∂x3

− x1y1(1 + x1y3 + y1y3)∂x1 ∧ ∂y1 + x3y3(x1 − y1)(x2 − y2)∂x2 ∧ ∂x3

+ (1 + x2y1 − y1y2)(1 + x1y3 + y1y3)∂x2 ∧ ∂y1 + x1x3y1y3∂x3 ∧ ∂y1 .

On the level surfaces of its Casimir functions, I1 = r and I3 = s, we may eliminate x2, x3 to
obtain a rational map ϕ2(x1, y1) of the plane:

x̃1 = y1,

ỹ1 = (r − y1)(1 + x1y3 + y1y3)(1 + y3(s + y1 + y3))

y3(y1 − r + y3((s − r + y1)(x1 + y1) − sx1y1y2 − rs) + y2
3(x1 + y1 − x1y1y2 − r))

.

With respect to these coordinates, the integral I2 (up to an additive constant) takes the following
rational form:

I2(x1, y1) = y2(r − x1 − y1 + x1y1y2)(1 + y3(s + x1 + y1 + y3))

x1y1(1 + x1y3 + y1y3)
. (30)

To reduce the Poisson matrix of 
2 to this manifold, we write it in terms of the coordinates:
(x1, y1, r, s)


2 =




0 x1y1(1 + (x1 + y1)y3) 0 0
−x1y1(1 + (x1 + y1)y3) 0 0 0

0 0 0 0
0 0 0 0


 .

Once again, we can calculate the QRT map of the plane which corresponds to the integral
(30). Once again this is just the double iteration of ϕ2(x1, y1), even though this map does not
commute with either of the constituent involutions.

Further discussion and examples of higher dimensional maps can be found in [6].

5. Conclusions

In this paper, we have presented an interesting class of maps of 2n-dimensional space,
possessing n first integrals. When n = 1, this is just the QRT map and the construction
for general n is a direct generalization of the QRT construction. We have no general proof of
the integrability of our maps, but have presented several integrable subclasses. Currently, we
have no general technique of constructing an invariant symplectic form, except in the super-
integrable case, with 2n − 1 invariant functions. However, we believe that there are many
integrable cases hidden within this family. Furthermore, to each of our maps it is possible to
follow the procedure of Quispel [8] to obtain a corresponding alternating map, whose square
is our generalized QRT map.

A natural question is how to isolate and classify integrable cases of our maps and this
is the most important task for the future. An efficient proof of integrability would be the
construction of a symplectic structure, which is also an important task for the future.
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